Reference

Appendix E: Library Quick Reference

Library Quick Reference

NumPy

PYTHON
import numpy as np

# Array creation
arr = np.array([1, 2, 3])
zeros = np.zeros((3, 3))
ones = np.ones((2, 4))
random = np.random.randn(100)

# Operations
dot = np.dot(a, b)
matmul = a @ b
broadcast = arr + 5

PyTorch

PYTHON
import torch
import torch.nn as nn

# Tensors
x = torch.randn(32, 784)
y = torch.tensor([0, 1, 2])

# Model
model = nn.Sequential(
    nn.Linear(784, 256),
    nn.ReLU(),
    nn.Linear(256, 10)
)